Tổng hợp các bài viết mô tả & giải thích về các hiện tượng trong tự nhiên, hiện tượng siêu nhiên kỳ thú, giải thích các hiện tượng lạ xảy ra trong thiên nhiên, hiện tượng sinh học, toán học, vật lý & hóa học. Giải thích hiện tượng sấm sét, sấm chớp trong mưa rông. Sấm sét là gì, tại sao có sấm sét, nguyên nhân gây ra hiện tượng sấm sét, cách phòng tránh sấm sét an toàn. Giải thích nguyên nhân của hiện tượng bị bóng đè, vì sao khi ngủ hay bị bóng đè, bóng đè có ảnh hưởng gì đến sức khỏe không? Giải thích hiện tượng bóng đè theo tâm linh. Giải thích hiện tượng bị ảo giác, ảo ảnh. Nguyên nhân bị ảo giác là gì, khi nào bị ảo giác? Cách chữa bị ảo giác. Cầu vồng xuất hiện khi nào, cầu vồng có mấy màu, tại sao có hiện tượng cầu vồng, giải thích hiện tượng cầu vồng sau cơn mưa. Vì sao bị chuột rút, Giải thích hiện tượng chuột rút, băng tan, động đất, gió bão, giông tố, Nguồn gốc, nguyên nhân gây ra hiện tượng & giải thích hiện tượng hiệu ứng nhà kính, hiệu ứng ánh sáng, khúc xạ ánh sáng, giao thoa ánh sáng, lạm phát, Nguồn gốc, nguyên nhân gây ra hiện tượng & giải thích hiện tượng mưa axit, mưa ngâu, mưa đá, mộng du, Nguồn gốc, nguyên nhân gây ra hiện tượng & giải thích hiện tượng ma chơi – ma nhập, mao dẫn, gọi hồn, núi lửa, bị nghén khi mang thai, quang hợp, sóng thần, súng giật lùi khi bắn, Nguồn gốc, nguyên nhân gây ra hiện tượng & giải thích hiện tượng ứ giọt và rỉ nhựa trên lá cây, dương cực tan, đoản mạch, elnino, giật mắt phải, lên đồng, Nguồn gốc, nguyên nhân gây ra hiện tượng & giải thích hiện tượng nháy mắt trái, nhật thực, nguyệt thực, thủy triều, Nguồn gốc, nguyên nhân gây ra hiện tượng & giải thích hiện tượng oxy hóa, phản xạ ánh sáng, quang điện, Nguồn gốc, nguyên nhân gây ra hiện tượng & giải thích hiện tượng qủy ám, thẩm thấu, bói chén. Những hình ảnh ngộ nghĩnh, hình ảnh hài hước, độc đáo, hình ảnh đẹp nhất, hình ảnh kỳ lạ, kinh dị nhất thế giới. Tổng hợp các bài viết mô tả & giải thích về các hiện tượng trong tự nhiên, hiện tượng siêu nhiên kỳ thú, giải thích các hiện tượng lạ xảy ra trong thiên nhiên, hiện tượng sinh học, toán học, vật lý & hóa học.

 

Hotline VPEC: 0948555111

Giải thích hiện tượng khúc xạ ánh sáng là gì đúng nhất

Khi bức xạ điện từ, dưới dạng ánh sáng khả kiến, truyền từ một chất hoặc môi trường này sang môi trường khác, sóng ánh sáng có thể trải qua một hiện tượng gọi là khúc xạ, biểu lộ bởi sự bẻ cong hoặc thay đổi hướng truyền ánh sáng.

Hãy cùng VPEC tìm hiểu về hiện tượng khúc xạ ánh sáng là gì? Và giải thích nguyên nhân tại sao có hiện tượng khúc xạ ánh sáng?

Hiện tượng khúc xạ ánh sáng là gì?
Khúc xạ xảy ra khi ánh sáng đi từ môi trường này sang môi trường khác chỉ khi nào có sự chênh lệch chiết suất giữa hai chất đó. Hiệu ứng khúc xạ là nguyên nhân gây ra nhiều hiện tượng quen thuộc đa dạng, như sự uốn cong rõ ràng của một vật chìm một phần trong nước và ảo ảnh nhìn thấy trên sa mạc cát, nóng bỏng. Sự khúc xạ sóng ánh sáng khả kiến cũng là một đặc trưng quan trọng của thấu kính, cho phép chúng hội tụ chùm tia sáng vào một điểm.
 
Hồi đầu thế kỉ 19, những người thợ thêu đã sử dụng những bình cầu thủy tinh chứa nước để hội tụ hoặc tập trung ánh sáng ngọn nến lên khu vực làm việc nhỏ của họ, giúp họ nhìn thấy những chi tiết tinh tế rõ ràng hơn. Hình 1 minh họa cái tụ sáng của người thợ thêu hồi những năm 1800, gồm một vài bình cầu thủy tinh sắp xếp thành hình tròn xung quanh một ngọn nến dựng đứng, cho phép ánh sáng phát ra từ ngọn nến hội tụ hoặc tập trung vào một vài đốm sáng. Bề mặt cong của bình cầu thủy tinh đóng vai trò làm bề mặt thu thập các tia sáng, sau đó chúng khúc xạ về phía một tiêu điểm chính theo kiểu tương tự như thấu kính lồi. Thấu kính hội tụ hoặc tập trung cũng được sử dụng trong kính hiển vi hiện đại và những quang cụ khác để tập trung ánh sáng, dựa trên nguyên lí khúc xạ giống như hoạt động của cái tụ sáng của những người thợ thêu buổi đầu.
 
Giải thích hiện tượng khúc xạ ánh sáng là gì đúng nhất 1
 
Khi ánh sáng truyền từ chất này sang chất khác, nó sẽ truyền thẳng đi mà không có sự thay đổi hướng khi nó trực giao với ranh giới giữa hai chất (tức là vuông góc, góc tới 90 độ). Tuy nhiên, nếu ánh sáng chạm tới ranh giới này ở những góc khác, nó sẽ bị bẻ cong, hoặc khúc xạ, với độ khúc xạ càng tăng khi chùm tia nghiêng một góc càng lớn so với mặt phân giới. Thí dụ, một chùm ánh sáng chạm tới mặt nước theo phương thẳng đứng sẽ không bị khúc xạ, nhưng nếu chùm tia đi vào nước ở một góc nhỏ, nó sẽ bị khúc xạ ở mức độ nhỏ. Nếu góc của chùm tia tăng lên thì ánh sáng sẽ khúc xạ với góc lớn hơn. Các nhà khoa học đã sớm nhận thấy rằng tỉ số giữa góc mà ánh sáng cắt qua mặt phân giới môi trường và góc tạo ra sau khi khúc xạ là một đặc trưng rất chính xác của chất liệu tạo ra hiệu ứng khúc xạ.
 
Trong nhiều thế kỉ, người ta đã lưu ý tới một sự thật khá kì quặc, nhưng lại hiển nhiên. Khi một thanh hoặc một que thẳng ngập một phần trong nước, thanh không còn thẳng nữa, mà nghiêng đi một góc hoặc một hướng khác (xem hình 2 minh họa hiện tượng này với ống hút dựng trong một ly nước). Ánh sáng bị khúc xạ khi nó đi ra khỏi nước, mang lại ảo giác là các vật trong nước hình như vừa méo mó vừa trông gần hơn so với thực tế. Ống hút trong hình 2 trông to hơn và hơi bị méo do sự khúc xạ của sóng ánh sáng phản xạ từ bề mặt ống hút. Trước tiên sóng phải truyền qua nước, rồi truyền qua mặt phân giới thủy tinh-nước và cuối cùng truyền vào không khí. Sóng ánh sáng đến từ các mặt (trước và sau) của ống bị lệch ở mức độ nhiều hơn so với sóng đến từ chính giữa ống, khiến nó trông có vẻ lớn hơn thực tế.
 
Ngay từ thế kỉ thứ nhất (sau Công nguyên), nhà thiên văn và địa lí Hy Lạp cổ đại Ptolemy đã cố gắng giải thích bằng toán học lượng bẻ cong (khúc xạ) xảy ra, nhưng quy luật mà ông đề xuất sau này được xác định là không xác thực. Trong những năm 1600, nhà toán học người Hà Lan Willebrord Snell đã thành công trong việc phát triển một quy luật định nghĩa một giá trị liên hệ với tỉ số của góc tới và góc khúc xạ, sau này được gọi là sức bẻ cong hay chiết suất của chất. Trong thực tế, một chất càng có khả năng bẻ cong hay làm khúc xạ ánh sáng, người ta nói nó có chiết suất càng lớn. Cái que trong nước trông có vẻ bị bẻ cong vì các tia sáng xuất phát từ que bị bẻ cong đột ngột tại mặt phân giới nước-không khí trước khi đi tới mắt chúng ta. Với tâm trạng chán ngán, Snell chưa bao giờ phát hiện được nguyên nhân cho hiệu ứng khúc xạ này.
 
Năm 1678, một nhà khoa học người Hà Lan, Christian Huygens, đã nêu ra một mối quan hệ toán học để giải thích các quan trắc của Snell và cho rằng chiết suất của một chất liên quan tới tốc độ của ánh sáng truyền qua chất đó. Huygens xác định được tỉ số liên hệ giữa góc của các đường đi ánh sáng trong hai chất có chiết suất khác nhau phải bằng với tỉ số vận tốc ánh sáng khi truyền qua mỗi chất đó. Như vậy, ông cho rằng ánh sáng truyền đi chậm hơn trong chất có chiết suất lớn hơn. Phát biểu cách khác, vận tốc ánh sáng qua một môi trường tỉ lệ nghịch với chiết suất của nó. Mặc dù quan điểm này đã được xác nhận bằng thực nghiệm kể từ thời đó, nhưng nó không hiển nhiên ngay đối với đa số các nhà nghiên cứu thế kỉ 17 và 18, những người không có đủ phương tiện đo vận tốc ánh sáng. Đối với những nhà khoa học này, ánh sáng hình như truyền đi ở cùng một tốc độ, không kể vật chất mà nó truyền trong đó là gì. Hơn 150 năm sau khi Huygens qua đời, tốc độ ánh sáng mới được đo chính xác để khẳng định lí thuyết của ông là đúng.
 
Giải thích hiện tượng khúc xạ ánh sáng là gì đúng nhất 2
 

Những món quà bạn không thể bỏ lỡ...!

Nếu bạn đang cần tìm một món quà thật hoàn hảo "CÓ 1 KHÔNG 2" cho mình hoặc dành tặng một ai đó mà bạn thực sự muốn làm hài lòng họ, thì đây là sự lựa chọn tuyệt vời nhất hiện nay tại Việt nam: Nên tặng quà gì ý nghĩa

 
Mở rộng những ý tưởng có trước đây, chiết suất của một chất hoặc một vật liệu trong suốt được định nghĩa là tương quan tốc độ ánh sáng truyền qua chất đó so với tốc độ của nó trong chân không. Bằng quy ước, người ta định nghĩa chiết suất của chân không có giá trị 1, đóng vai trò là một giá trị tham chiếu được chấp nhận rộng rãi. Chiết suất của những vật liệu trong suốt khác, thường được kí hiệu là n, được định nghĩa qua phương trình:
 
n = c/v
 
Trong đó c là tốc độ ánh sáng trong chân không, v là vận tốc ánh sáng trong chất liệu. Do chiết suất của chân không được định nghĩa là 1 và ánh sáng đạt được tốc độ cực đại của nó trong chân không (một điều không xảy ra trong bất cứ chất liệu nào khác), nên chiết suất của tất cả các chất liệu trong suốt khác đều lớn hơn 1 và có thể được đo bằng một số kĩ thuật. Trong đa số mục đích thực tế nhất, chiết suất của không khí (1,0003) gần với chiết suất của chân không, nên nó có thể được dùng để tính chiết suất của những chất liệu chưa biết. Chiết suất đo được của một vài chất liệu trong suốt phổ biến. Các chất có chiết suất cao làm chậm ánh sáng nhiều hơn so với những chất có chiết suất thấp. Trong thực tế, người ta nói những chất này có tính khúc xạ hơn, và chúng biểu lộ một góc khúc xạ lớn hơn đối với các tia sáng tới truyền qua mặt phân giới không khí.
 
Định luật Snell trong khúc xạ ánh sáng
Khi sóng ánh sáng truyền từ một môi trường khúc xạ kém (như không khí) sang môi trường khúc xạ hơn (như nước), vận tốc sóng giảm đi. Ngược lại, khi ánh sáng truyền từ môi trường khúc xạ hơn (nước) sang môi trường khúc xạ kém (không khí), vận tốc sóng tăng lên. Pháp tuyến được định nghĩa là đường thẳng vuông góc với ranh giới, hay mặt phân giới, giữa hai chất. Góc tới trong môi trường thứ nhất, so với pháp tuyến, và góc khúc xạ trong môi trường thứ hai (cũng so với pháp tuyến) sẽ khác nhau theo tỉ lệ với sự chênh lệch chiết suất giữa hai chất. Nếu ánh sáng truyền từ môi trường chiết suất thấp sang môi trường chiết suất cao, nó bị bẻ cong về phía pháp tuyến. Tuy nhiên, nếu sóng truyền từ môi trường chiết suất cao sang môi trường chiết suất thấp, nó bị bẻ cong ra xa pháp tuyến. Định luật Snell mô tả mối quan hệ giữa góc của hai sóng ánh sáng và chiết suất của hai chất liệu có dạng:
 
n1 x sin(θ1) = n2 x sin(θ2)
 
Trong phương trình Snell, n1 là chiết suất của môi trường mà tia sáng tới, còn n2 là chiết suất của môi trường mà tia khúc xạ truyền. θ1 là góc (so với pháp tuyến) mà tia tới chạm mặt phân cách, θ2 là góc tia khúc xạ đi ra.
 
Có một số điểm quan trọng có thể thu được từ phương trình Snell. Khi n1 < n2 thì góc khúc xạ luôn luôn nhỏ hơn góc tới (bẻ cong về phía pháp tuyến). Ngược lại, khi n2 < n1 thì góc khúc xạ luôn luôn lớn hơn góc tới (bẻ cong ra xa pháp tuyến). Khi hai chiết suất bằng nhau (n1 = n2) thì hai góc cũng phải bằng nhau, cho phép ánh sáng truyền qua mà không khúc xạ.
 
Hai trường hợp n1 > n2 và n1 < n2 với góc tới tùy ý bằng 45 độ. Môi trường gồm không khí và nước lần lượt có chiết suất là 1,000 và 1,333. Ở bên trái hình 3, sóng ánh sáng truyền qua không khí tới mặt nước ở góc 45 độ, và bị khúc xạ vào nước ở góc 32 độ so với pháp tuyến. Khi tình huống đảo ngược lại, tia sáng có cùng góc tới trong nước bị khúc xạ ở góc 70 độ khi truyền qua không khí.
 
Sắp xếp lại theo một dạng khác, định luật Snell chứng tỏ tỉ số của sin góc tới và sin góc khúc xạ bằng một hằng số, n, là tỉ số của vận tốc ánh sáng (hay chiết suất) trong hai môi trường. Tỉ số này, n2/n1 được gọi là chiết suất tỉ đối của hai chất:
 
Chiết suất tỉ đối = sin(θ1)/sin(θ2) = nr = n2/n1
 
Một khía cạnh khác của khái niệm chiết suất cho trường hợp chùm tia sáng truyền từ không khí qua cả thủy tinh và nước và ló ra trở lại vào không khí. Chú ý rằng cả hai chùm tia đi vào chất khúc xạ hơn qua góc tới như nhau so với pháp tuyến (60 độ), sự khúc xạ trong thủy tinh lớn hơn chừng 6 độ so với trong nước do thủy tinh có chiết suất cao hơn.
 
Chùm tia bị khúc xạ lúc đi vào, và lại khúc xạ lúc đi ra khỏi chất chiết suất cao, khúc xạ theo hướng ngược lại với hướng đi vào. Cả hai chùm ánh sáng đều đi ra với cùng góc như khi chúng đi vào, nhưng điểm đi ra lệch nhau dọc theo mặt phân giới vì góc truyền của hai chùm tia khác nhau khi mỗi tia truyền trong chất liệu có chiết suất cao. Hiệu ứng khúc xạ này rất quan trọng trong việc chế tạo thấu kính dùng điều khiển điểm hội tụ chính xác của các tia sáng tạo ảnh.
 
Khúc xạ và thấu kính
Khúc xạ ánh sáng là một đặc điểm vật lí quan trọng của thấu kính, đặc biệt liên quan tới việc chế tạo một thấu kính đơn lẻ hoặc một hệ thấu kính. Ở một thấu kính lồi đơn giản, sóng ánh sáng phản xạ từ vật thể được thu gom bởi thấu kính và khúc xạ về phía trục chính để hội tụ vào tiêu điểm phía sau. Vị trí tương đối của vật so với tiêu điểm phía trước của thấu kính xác định cách vật được tạo ảnh. Nếu vật nằm phía ngoài khoảng cách hai lần tiêu cự tính từ thấu kính ra thì nó trông nhỏ hơn và bị lộn ngược và phải được tạo ảnh bằng một thấu kính nữa để phóng to kích thước. Tuy nhiên, khi vật ở gần thấu kính hơn so với tiêu điểm phía trước, thì ảnh xuất hiện thẳng đứng và lớn hơn, như có thể dễ dàng chứng minh bằng một cái kính lúp đơn giản.

Tham khảo các bài viết về: Hiện tượng tự nhiên bí ẩn

Như vậy, khúc xạ ánh sáng là một hiện tượng vật lý đang diễn ra khá phổ biến ở khắp mọi nơi trong cuộc sống. Hiểu và giải thích được nguyên nhân của hiện tượng khúc xạ ánh sáng sẽ giúp chúng ta có một cách tư duy và vận dụng vào cuộc sống.
Scroll to top

Đồng hồ chính hãng, đồng hồ nam nữ hàng hiệu giá tốt

ĐỒNG HỒ CHÍNH HÃNG TẠI VPEC

. Bạn là người am hiểu về đồng hồ?

. Bạn muốn thể hiện phong cách & sự tự tin với 1 chiếc đồng hồ hàng hiệu?

. Bạn đang tìm thương hiệu đồng hồ đeo tay gì phù hợp nhất với mình?

. Bạn mong muốn được sở hữu 1 chiếc đồng hồ chính hãng đẹp như ý?

. Bạn không biết nên mua chiếc đồng hồ ấy ở đâu uy tín?

Đồng hồ đeo tay luôn là một trong những món đồ phụ kiện trang sức thời trang đặc biệt rất được ưa chuộng trên thế giới, trong đó có Việt nam. Hãy tìm hiểu và trải nghiệm những mẫu đồng hồ hàng hiệu dành cho nam & nữ đang HOT nhất hiện nay và được người tiêu dùng khắp nơi trên thế giới yêu thích lựa chọn...!

Xem ngay: Đồng hồ chính hãng

Dây lưng hàng hiệu, thắt lưng nam nữ chính hãng

DÂY LƯNG HÀNG HIỆU TẠI VPEC

. Bạn là người am hiểu về thời trang?

. Bạn muốn mình luôn thanh lịch & sang trọng?

. Bạn đang tìm thương hiệu dây lưng gì?

. Bạn mong muốn được sở hữu 1 chiếc dây lưng hàng hiệu đẹp như ý?

. Bạn không biết nên mua chiếc dây lưng ấy ở đâu uy tín?

Hãy tìm hiểu và trải nghiệm những mẫu dây lưng hàng hiệu, thắt lưng nam nữ chính hãng đang HOT nhất hiện nay và được người tiêu dùng khắp nơi trên thế giới ưa chuộng...!

Xem ngay: Dây lưng hàng hiệu